Neutron and X-ray Powder Diffraction Studies of the Structure of Uranium Hexachloride

BY J. C. TAYLOR AND P. W. WILSON

A.A.E.C. Research Establishment, P.M.B., Sutherland, N.S.W., Australia 2232

(Received 11 January 1974; accepted 19 February 1974)

The structure of uranium hexachloride, UCl₆, was refined with neutron and X-ray powder diffraction data. UCl₆ is hexagonal, with a = 10.95 (1), c = 6.016 (6) Å, space group $P\overline{3}$ m1 (D_{3d}^3), and Z = 3. The neutron data were refined by the least-squares profile-fitting technique to a value of $[\Sigma w (I_o - I_c)^2]^{1/2}/2$

 $(\Sigma w I_{\rho}^2)^{1/2}$, where I is the intensity corrected for background at a point i along the scan, of 0.16. The

single uranium variable positional parameter was more reliably obtained by a least-squares refinement of the integrated intensities on a Debye-Scherrer photograph, the final value of $\sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{i} \sum_{i} \sum_{j} \sum_{i} \sum$

for the X-ray powder data being 0.22, where *i* is a line in the X-ray pattern and *j* an *hkl* component with multiplicity *J*. The structure proposed by Zachariasen [*Acta Cryst.* (1948). 1, 285–287] was confirmed. The octahedron around the uranium atom at (000) is nearly regular, and around the uranium atom at $(\frac{1}{3}, \frac{2}{3}, 0.518)$ slightly distorted. The U-Cl distances lie between 2.41 (4) Å and 2.51 (4) Å.

Introduction

Uranium hexachloride is important in the nuclear industry since it is a volatile uranium hexahalide, similar, in some respects, to uranium hexafluoride. 25 years have elapsed since the classic X-ray powder study by Zachariasen (1948), and no further structural investigations appear to have been carried out on UCl₆ since that time. Historically, UCl₆ is difficult to prepare in pure form and in large quantities. Zachariasen worked with a few micrograms of sublimed material in a capillary tube, which also contained zones of UCl₄ and UCl₅. From packing considerations and the X-ray powder diffraction intensities, Zachariasen (1948) deduced an idealized structure for UCl₆ in the space group $P\overline{3}m1$ (D_{3d}^3), with U atoms in positions 1(a): (0,0,0) and 2(d): $\pm (\frac{1}{3},\frac{2}{3},z)$ and three independent Cl atoms, each in positions of type 6(i): $\pm (x, \bar{x}, z; x, 2x, z;$ $2\bar{x}, \bar{x}, z$). The chlorine atoms were in hexagonal close packing and the uranium atoms in octahedral holes. The chlorine atoms were contracted around occupied holes and expanded around vacant holes. All U-Cl distances were estimated to be 2.42(1) Å. The crystal data for UCl_6 are given in Table 1.

It was considered worthwhile to confirm the above idealized structure and measure the parameters by least-squares refinements with X-ray and neutron diffraction data for UCl₆. As uranium is a strong X-ray scatterer it was thought that the sole uranium positional parameter, z U(2), Table 2, would be best determined

from the X-ray powder pattern. Chlorine is a weak X-ray scatterer compared to uranium, but has a larger coherent neutron scattering amplitude than uranium. Thus it was thought the chlorine atoms would be more effectively located by neutron diffraction. A combination of the two techniques was therefore expected to give reliable structural parameters for UCl₆.

Experimental

Preparation

UCl₆ was prepared using the exchange reaction between UF₆ and BCl₃ (O'Donnell, Stewart & Wilson, 1966; O'Donnell & Wilson, 1973). This method gives very pure UCl₆ and yields 1-2 g of UCl₆ for each preparation. Since approximately 10 g of UCl₆ were required, the preparation was repeated until sufficient UCl₆ was prepared. This meant portions of UCl₆ had to be transferred several times into various containers and, although this was done in a dry box, contamination by hydrolysis occurred since UCl₆ is extremely hygroscopic. The whole sample of UCl₆ was therefore purified by sublimation (100°C, 1 mPa). This in turn introduced a small amount of UCl₄ contamination due to decomposition of the thermally unstable UCl₆, but this was insufficient to interfere with the structural study.

X-ray diffraction data

Some UCl₆ was sealed inside a quartz capillary of 0.6

Table 1. Crvs	stal data	for uranium	hexachloride
---------------	-----------	-------------	--------------

. . . .

.

		Molecular we	eignt 450.75			
Reference	a (Å)	c (Å)	U (Å ³)	$D_x (g \text{ cm}^{-3})$	Ζ	Space group
Zachariasen (1948)	10.97 (2)	6.04 (1)	629.5	3.567	3	$P\overline{3}m1 (D_{3d}^3)$
Present work, X-rays	10.95 (1)	6.016 (6)	624.7	3.594		
Present work, neutrons	10.97 (1)	6.025 (8)	627.9	3.576		

mm diameter, and an X-ray diffraction pattern was taken with a Philips 114.6 mm diameter powder camera with Cu K α radiation. The intensities of 29 powder lines were estimated visually by comparison with a standard line. 22 additional hkl were unobservably small, but were still useful in the least-squares refinement, being given intensities $\frac{1}{2}I_{min}$, where I_{min} was the estimated minimum observable intensity. After correction for film shrinkage, a least-squares refinement with 27 2 θ values to $2\theta = 85^{\circ}$, with a cos² θ drift term (Mueller, Heaton & Miller, 1960), gave a = 10.95(1) Å and c = 6.016(6) Å.

Neutron diffraction data

Approximately 12 g of UCl₆ powder were mixed with aluminum powder to dilute the sample so as to fill a 1 cm diameter vanadium can. A neutron powder pattern of the sample was taken with the elastic diffraction technique (Caglioti, 1970) to $2\theta = 41.4^{\circ}$ with $\lambda = 1.082$ Å. Lattice constants found by least-squares refinement of the neutron line positions were a = 10.97(1) Å and c = 6.025(8) Å.

The various crystal data for UCl₆ are collected in Table 1.

Calculations

Refinement with X-ray data

Each X-ray line consisted of *j* Bragg reflexions hkl with multiplicities J. The observed intensities I_o were converted to $\sum_{i} JF_{o}^{2}$ values with the expression

$$\sum_{I} JF_o^2 \propto I_o \sin^2 \theta \cos \theta (1 + \cos^2 2\theta)^{-1} A^*$$

where A^* is an absorption correction factor. The linear absorption coefficient, μ , for UCl₆ was 840 cm⁻¹ for Cu K α . The estimated value of μR , where R is the capillary radius, was 18, allowing a 70% packing density. The absorption corrections were obtained from tables of A^* vs. 2θ (International Tables for X-ray Crystallography 1959).

The Zachariasen coordinates were used as the starting point for a least-squares refinement with the X-ray powder data. The function minimized was $\sum_{i} [w_i(\sum_{i} JF_o^2)]$ $-\sum JF_c^2)^2$], where *i* denotes a line in the pattern. The X-ray scattering curves for neutral Cl and U were used (International Tables for X-ray Crystallography, 1962) uncorrected for anomalous dispersion. An overall isotropic Debye-Waller temperature factor was assumed. The computer program was a modification of ORFLS (Busing, Martin & Levy, 1962).

It was found that the chlorine parameters, as well as the U(2) z parameter, could be refined with the X-ray data. At convergence, the value of the residual $\sum_{i} \sum_{j} (\sum_{j} JF_{o}^{2} - \sum_{j} JF_{c}^{2}) / \sum_{i,j} JF_{o}^{2}$ was 0.22. The X-ray positional parameters are given in Table 2 and the observed and

calculated $\sum JF_{0}^{2}$ values in Table 3,

Table 2. Positional parameters in uranium hexachloride from the X-ray and neutron powder refinements, compared with those of Zachariasen (1948)

Atom	Position	$10^{3} x$	$10^{3} y$	$10^{3} z$	Reference
U(1)	1(a)	0	0	0	
U(2)	2(d)	333	667	500	*
(-)	- 、 、	333	667	518 (5)	†
		333	667	518 (not	‡
				refined)	•
Cl(1)	6(<i>i</i>)	100	- 100	250	*
		105 (8)	- 105 (8)	228 (16)	†
		109 (2)	-109(2)	222 (8)	1
Cl(2)	6(i)	430	-430	250	*
		442 (7)	-442 (7)	203 (15)	Ť
		431 (2)	-431(2)	237 (8)	±
Cl(3)	6(i)	770	- 770	250	*
		761 (7)	-761 (7)	243 (14)	†
		777 (2)	-777 (2)	286 (8)	‡
	* Za	chariasen	(1948),		
	+ Th	is work	X-ray refine	ement	

[‡] This work, neutron refinement.

Overall B = 4.0 (4) Å² (X-rays).

=4.5 (2) Å² (neutrons).

Refinement with neutron data

The Zachariasen parameters were used as the startting point of a least-squares refinement based on the neutron powder diffraction data, by the profile-fitting technique of Rietveld (1967). In this method, considered to be the best powder-refinement procedure available, the powder pattern was assumed to be the superposition of all the hkl Gaussians, while the data points are the counts along the scan, corrected for background. The computer program used was a modified version of ORFLS (Busing, Martin & Levy, 1962). The neutron scattering lengths were $b_{\rm U} = 0.85 \times 10^{-12}$ cm, and $b_{\rm Cl} =$ 0.96×10^{-12} cm (Neutron Diffraction Commission, 1972). Initial refinements gave a value for the z parameter of U(2) of 0.63, which was considered to be too high. The high value was thought to be due to the combined effects of (i) some UCl₄ impurity, the effect of which was corrected for later in the refinement (see below)(ii) the much lower proportion of U scattering in the neutron data and (iii) the small range of *l* indices due to the short c axis. The z parameter of U(2) was therefore fixed at the X-ray value 0.518(5)and not refined. In the later stages of the neutron refinement, some $(|I_o - I_c|)/\sigma(I_o)$ values, where $\sigma(I_o)$ is the standard deviation in I_o , were greater than 3. These occurred at diffraction angles where UCl₄ Bragg intensities were expected. The effect of the probable UCl₄ impurity on the refinement was reduced by increasing the $\sigma(I_o)$ values for the above points so that these $(|I_o - I_c|)/$ $\sigma(I_o)$ values were less than 1. In all, 24 of the 313 data points were considered to be affected by UCl₄ impurity. Excess of observed over calculated intensity at these points can be seen in the final observed and calculated profile, Fig. 1, but, as corrections for the effect were made, as described above, it was considered that the chlorine parameters from the neutron refinement were reliable.

The least-squares weights were $w = \sigma(I_o)^{-2}$, directly based on the counting statistics. Convergence was obtained at a weighted residual $R = [\sum w(I_o - I_c)^2]^{1/2}/(\sum wI_o^2)^{1/2}$ of 0.16. The unweighted residual over the 313 scan points in Fig. 1 $\sum (|I_o - I_c|)/\sum I_o$ was 0.28 (higher owing to the UCl₄).

Fig. 1. Observed and calculated neutron diffraction powder pattern profiles for uranium hexachloride.

The neutron and X-ray positional parameters are compared in Table 2. It is seen that, for chlorine, the neutron e.s.d.'s are lower than the X-ray e.s.d.'s by a factor of two for the z coordinates and up to 4 for the x, ycoordinates. The final parameters taken were the X-ray value for the z coordinate of U(2) (the only uranium variable parameter) and the neutron parameters for the chlorine atoms. Bond lengths and angles calculated with these parameters are given in Table 4.

Discussion

The present results have confirmed the structure proposed 25 years ago by Zachariasen (1948) for uranium hexachloride, and has provided the first refined positional parameters. While the x and y parameters of chlorine, Table 2, are close to the values estimated by Zachariasen (1948), the z coordinates differ slightly from the ideal values of $\frac{1}{4}$, and the U(2) atom from the value $z = \frac{1}{2}$. The original solution of the UCl₆ structure by Zachariasen with a sublimed microgram-range sample containing UCl₄ and UCl₅ must be regarded as a remarkable achievement. The structure is shown in Fig. 2. The octahedron around U(1) at (0,0,0) is nearly regular, all U(1)-Cl(1) distances being $2\cdot47(4)$ Å and the Cl(1)-U(1)-Cl(1) angles being $86\cdot6(15)^{\circ}$ and

Table 3. Observed and calculated intensities in Debye–Scherrer X-ray pattern of UCl₆

Where a reflexion of type hkil is given, the presence of the reflexion hkil, which occurs at the same angle but has a different F_c in $P\overline{3}m1$, is implied. The same holds for reflexions h0hl. J is the multiplicity of the reflexion, and the \sum sign indicates a summation over all reflexions in a line.

hkl	$10^{-4} \sum JF_{o}^{2}$	$10^{-4} \sum JF_c^2$	hkl	$10^{-4} \sum JF_{o}^{2}$	$10^{-4} \sum JF_c^2$	hkl	$10^{-4} \sum JF_{o}^{2}$	$10^{-4} \sum JF_c^2$
*100	2	0	103)	10	24	104)		
*001	1	0	411	12	26	512	20	24
110	84	47	*500	1	0	323	20	24
101	27	33	*113	1	3	521		
*200	1	0	*402	2	0	114		
*111	2	7	203			610	21	24
201	33	34	330 }	80	69	413 🕻	21	24
*210	4	0	501			204		
300	17	8	*420	2	0	602 j		
211	38	48	322			611	40	17
*002	1	0	213	30	34	214 👔	40	47
*102	2	2	331			432 J		
301	48	43	412 j			503 (24	22
220	29	19	421	01	01	440 ∫	24	<i>LL</i> ,
112)	20	41	303 👔	91	91	304)		
310 🐧	30	41	510			522		
*202	2	1	511	31	24	530 }	33	34
*221	1	6	*223	2	2	700 🛔		
311)	47	15	*502	3	1	333		
400 ∫	47	43	313	20	22	*441	2	1
212	6	1	600 🕻	20	22	*423	4	13
*401	2	16	*332	1	2	*224	2	1
302	05	80	*430	1	0	531		
320 ∫	65	00	422			701 {	33	31
410 Ì	56	62	601 }	23	23	620		
321	30	03	403			*612	7	0
222 j	5 4	47	520 j			*314	7	2
003	54	4/	004	62	53	513]	16	10
*312 (2	2	431			621 j	10	17
			,			*404	7	2
						710	16	8

* Denotes an unobservably small intensity, estimated as described in the text.

Table 4. Interatomic distances and angles in uranium hexachloride					
U-Cl distances (Å)					
$U(1)-Cl(1)(6 \times) = 2.47(4)$	$U(2)-Cl(3)(3 \times) = 2.41(4)$				
$U(2)-Cl(2)(3 \times) = 2.51(4)$					
Intralayer Cl–Cl distances (Å)					
Cl(1)-Cl(1) = 3.59(6)*	C(1) - C(2) = 3.70(3)				
Cl(2)-Cl(2) = 3.22(5)*	Cl(1)-Cl(3) = 3.69(4)				
$Cl(3)-Cl(3) = 3.63(8)^*$	Cl(2) - Cl(3) = 3.89(3)				
Interlayer Cl-Cl distances (Å)					
Cl(1)-Cl(1) 3.38(9) * 3.94(9)	$C_{1}(1)-C_{1}(3) 3.67 (8), 3.75 (9)$				
Cl(2) - Cl(2) 3.88(8), 4.11(9)	Cl(2)-Cl(3) 3.49 (8),* 3.73 (9)				
Cl-U-Cl angles (°)					
Cl(1)-U(1)-Cl(1)	86.6 (15), 93.4 (15)				
Cl(2)-U(2)-Cl(2)	79.7 (28)				
Cl(2)-U(2)-Cl(3)	90.4 (15)				
Cl(3)-U(2)-Cl(3)	98.0 (28)				
U-U distances (Å)					

U(1)-U(2) 6.97 (4), 7.06 (4) U(2)-U(2) 6.34 (1) * in octahedron.

93.4(15)°. The octahedron around U(2) may be slightly distorted, with U(2)–Cl(2) and U(2)–Cl(3) distances of 2.51(4) and 2.41(4) Å and Cl(2)–U(2)–Cl(2), Cl(3)–U(2)–Cl(3) and Cl(2)–U(2)–Cl(3) angles of 79.7(28), 98.0(28), and 90.4(15)°.

The Cl–Cl contacts in the octahedra, Table 4, lie between 3.22 and 3.63 Å, and elsewhere between 3.67 Å and 4.11 Å, confirming the contraction around occupied octahedral holes and expansion around vacant holes postulated by Zachariasen. Cl–Cl contacts shorter than 3.22 Å occur in UCl₄, UO₂Cl₂ and ThCl₄ (Taylor & Wilson, 1973).

 β -WCl₆ also has the UCl₆ structure-type. Neutron diffraction coordinates for β -WCl₆ are in good agreement with the present results for UCl₆ (Taylor & Wilson 1974). WCl₆ is dimorphic, having rhombohedral (α) and hexagonal (β) forms (Smith, Landingham, Smith & Johnson, 1968) but for UCl₆ only the hexagonal form has been observed.

UCl₆ can be thought of as a three-dimensional array of UCl₆ molecules. Alternatively, it may be described as a hexagonal close-packed chlorine lattice with the small metal atoms in octahedral holes. Zachariasen used the former description to explain its volatility (57.6 mm; 215 °C). β -WCl₆ has a similar volatility

Fig. 2. The structure of uranium hexachloride. The intralayer and interlayer Cl-Cl contacts are shown. Shaded circles are near $z = \frac{1}{4}$, and open circles near $z = \frac{3}{4}$.

(43 mm., 215° C). Neither compound has a volatility comparable to that of substances with truly molecular lattices and it is felt the second description gives a better representation of the properties of these two compounds.

References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CAGLIOTI, G. (1970). In *Thermal Neutron Diffraction*, Chap. 2. Edited by B. T. M. WILLIS. Oxford Univ. Press.
- International Tables for X-ray Crystallography (1959). Vol. II, p. 295. Birmingham: Kynoch Press.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 201. Birmingham: Kynoch Press.
- MUELLER, M. H., HEATON, L. & MILLER, K. T. (1960). Acta Cryst. 13, 828.
- NEUTRON DIFFRACTION COMMISSION (1972). Acta Cryst. A28, 357–358.
- O'DONNELL, T. A., STEWART, D. F. & WILSON, P. W. (1966). Inorg. Chem. 5, 1438–1441.
- O'DONNELL, T. A. & WILSON, P. W. (1973). *Inorg. Synth.* In the press.
- RIETVELD, H. M. (1967). Acta Cryst. 22, 151-152.
- SMITH, D. K., LANDINGHAM, R. L., SMITH, G. S. & JOHN-SON, Q. (1968). Acta Cryst. B24, 1563.
- TAYLOR, J. C. & WILSON, P. W. (1973). Acta Cryst. B29, 1942–1944.
- TAYLOR, J. C. & WILSON, P. W. (1974). Acta Cryst. B30, 1216–1220.
- ZACHARIASEN, W. H. (1948). Acta Cryst. 1, 285–287.